Tentamen Metrische Ruimten, 23/08/04

- 1. Let B be a totally bounded subset of a metric space M. Show that B is bounded. Give an example of a bounded metric space which is not totally bounded.
- 2. Let $f_n \in C[0,1]$ be defined by

$$f_n(x) = \frac{13x^n}{7n}, \ x \in [0, 1], n \in \mathbb{N}.$$

- (a) Formulate the Theorem of Arzela-Ascoli.
- (b) Let $F:=\{f_n:\ n\in\mathbb{N}\}.$ What is cl(F) in C[0,1] with respect to the $d_\infty\text{-metric}?$
- (c) Is cl(F) compact in C[0,1]?
- 3. Let $\mathfrak T$ consist of all subsets U of the set of real numbers $\mathbb R$ such that $\mathbb R \setminus U$ is finite, together with the empty set \emptyset .
 - (a) Show that $(\mathbb{R}, \mathfrak{T})$ is a topological space.
 - (b) Is $(\mathbb{R}, \mathfrak{T})$ compact?
 - (c) Is $(\mathbb{R}, \mathfrak{T})$ Hausdorff?
 - (d) Is $(\mathbb{R}, \mathfrak{T})$ connected?
 - (e) Can \mathfrak{T} be generated by a (non-Euclidean) metric defined on \mathbb{R} ?

Justify the answers!

- 4. Determine the closure and the boundary of each of the following subsets of \mathbb{R} with the usual Euclidean metric. Which of these sets are dense or nowhere dense in \mathbb{R} ? (\mathbb{Q} is the set of rational numbers, \mathbb{Z} the set of integers.)
 - (a) \mathbb{R} ;
 - (b) $\mathbb{Q} \cap [-1, 2)$;
 - (c) $\{\frac{1}{n} : n \in \mathbb{Z}, n \neq 0\};$
 - (d) $\mathbb{R} \setminus \mathbb{Q}$;
 - (e) $\mathbb{R} \setminus \mathbb{Z}$;
 - (f) \mathbb{Z} .